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UNIT I 

History of Computers in 
Pharmaceutical Research 

No one can picture living without computers when it comes to storing, 
sending, and managing information in today's fast-paced world. 

The pharmaceutical industry's R&D system also includes 
computers, which play an essential role in drug discovery, laboratory 
equipment operation, and processing clinical and experimental data. 

Computers first entered the pharmaceutical sector in the 1940s, but 
their primary usage was for accounting and other non-scientific tasks. 

The importance of computers in comprehending the relationship 
between a molecule's chemical structure and its molecular 
characteristics, including biological activity, evolves in tandem with the 
pace of discovery and innovation in the development of new chemical 
entities or compounds. Calculating molecular characteristics has made 
theoretical and experimental investigations into molecular structures 
possible. 

Mid-19th Century 
Publications presenting mathematical relationships between chemical 
structure and biological activity started appearing in the middle of the 
nineteenth century. After much work, QSAR (Quantitative Structure 
Activity Relationships) was introduced, which essentially used 
chemical descriptors to describe biological activity. These molecular 
descriptors only provide a numerical number, either computed or 
experimental, that characterizes the chemical structure of that 
particular molecule. The creation and application of QSARs were 
products of computer engineering. Thus, the computer—originally 
intended for use in the military and accounting—evolved into a tool for 
scientific advancement. 

The role of computers has emerged as a major tool for analysing 
voluminous and high-dimensional data in pharmaceutical research, 
helping to overcome previous barriers to medication discovery. 
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Researchers want to quicken the pace of drug development and lower 
associated expenses by tapping into the help of computers. According 
to Bekryl, a market research organisation, the application of AI in 
pharmaceutical research might save more than US $70 billion in drug 
development costs by 2028. By relying on chemists to develop, 
synthesise, and analyse a large number of compounds without first 
subjecting them to a broad screening process, rational structure-based 
drug discovery techniques are gaining popularity. 

The early 1960s 
Drugs were discovered in the early 1960s via a process of trial and 
error. Here, the chemists or discoverer would peruse patent literature 
for competing products, draw on their imagination and experience to 
create therapeutically active compounds, and then test them for 
bioactivity against other targets that were being studied at the time or 
as potential targets in disease treatment by forming complexes with 
protein compounds. But now in the realm of computer science, AI is 
considered a branch that focuses on problem-solving using symbolic 
programming. It has the potential to revolutionize various industries, 
including pharmacy. A considerable amount of research is being 
conducted to enhance the current AI technology, aiming to make the 
pharmacy profession more efficient and effective by discovering new 
drug molecules along with their formulation and optimization 
parameters 

Early adopters of computational drug discovery included industry 
heavyweights like Abbott, Schering-Plough, Upjohn, and Dow 
Chemical. While some of these businesses poured money into 
software and gear, others educated their own scientists to apply 
computational chemistry. Eli Lilly was one of the first places 
computational drug development made headway; there, scientists 
discovered a link between the antibacterial activity of cephalosporin 
and the computed electronic structure of its beta-lactam ring. Despite 
these promising beginnings, some businesses gave up on 
computational drug development because upper management didn't 
back their efforts. However, Lilly persisted and eventually established 
itself as a leader in this field. The company's success was due in part 
to its investment in computational infrastructure and its willingness to 
train its scientists in this new technology. 

Hardware and software limitations hampered computational drug 
development in its early stages. Computers were slow and had limited 
memory, and the software was often difficult to use. However, as 
computers became more powerful and software became more user-
friendly, computational drug discovery became more widespread. 
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One of the challenges of computational drug discovery is the 
communication gap between medicinal and computational chemists. 
Computational chemists are more concerned with the theoretical parts 
of medication design, while medicinal chemists are more concerned 
with the practical synthesis and testing of novel chemicals. "Because of 
this, tensions and miscommunications may arise between the two 
communities. By arranging a number of seminars to educate medicinal 
chemists on computational drug development, Lilly made a 
constructive move toward solving this problem. Because of this, there 
was better communication between the two parties, and they worked 
together more on medication development. 

These days, the drug development process would not be complete 
without computational drug discovery. Beneficial medication 
candidates may be discovered and enhanced, and their toxicity can be 
foreseen using this method. The use of computational drug discovery 
has the potential to significantly increase the success rate of new 
medication approvals and decrease the time it takes to create drugs. 

The early 1970s 
Computational chemists could extract new compounds with 
therapeutic activity as additional compounds were added to the Protein 
Data Bank (PDB) and the Cambridge Structural Database (CSD) for 
research in the 1970s. 

In the 1980s, advances were furthered by the creation of the IBM 
personal computer (PC). In 1984, the Apple Macintosh was developed, 
and computer software for word processing and graphics was 
discovered. This software greatly assisted medicinal chemists in 
readily accessing chemical databases.  

Chem Draw and similar programs made it easy for chemists to draw 
two-dimensional chemical diagrams for use in reports, articles, and 
patents; in the future, these diagrams will be useful for visualizing the 
three-dimensional structures of compounds using either a ball and stick 
model or a computer screen. 

Between 1975 and 1985 
During this period, the computer-aided Drug Design method was used 
to study the discovery of a new chemical entity. 48 US-based chemical 
and pharmaceutical firms that used CAD software participated in the 
research.  
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The 1990s 
The use of supercomputers in the search for novel illness therapy 
targets began in the 1990s. 

Cray Research's CEO daringly met Lilly's CEO and offered the 
corporation an enticing price for a supercomputer. His strategy was 
successful in maintaining a competitive edge in the pharmaceutical 
marketplace, as numerous pharmaceutical companies—including 
Merck, Bristol-Myers Squibb, Marion Merrell Dow, Johnson & Johnson, 
and Bayer—bought or rented supercomputers from Cray Research. 

Because of the shift in perspective towards computational chemists 
brought about by the growing importance of computational drug 
discovery, businesses like Lilly now include computational chemists as 
co-inventors on patents in which they have a hand. 

Statistical Modelling in Pharmaceutical Research and 
Development 
The pharmaceutical business has effectively used statistical principles 
and methods to address several difficulties. Due to the high stakes 
involved, many pharmaceutical firms are hesitant to spend extensively 
on the quality of their large-scale production processes before a drug's 
commercialization approval. This is because a negative outcome in a 
clinical trial might result in the complete failure of the product. 

A medicine's patent life may expire between sixty and seventy-five 
percent throughout the twelve to fifteen years it takes to get from 
ideation to clinical approval. Phases IIA and IIB clinical studies, which 
determine the dosage and demonstrate the product's idea, may still be 
unsuccessful after 40-50% of the product's patent life has passed. 
Also, Phase I (first-in-human) studies, which evaluate the safety, 
tolerability, and drug blood levels, are anticipated to fail with one out of 
three medicines. 

Consequently, after the successful completion of Phase III clinical 
trials, pharmaceutical firms are under significant economic pressure to 
expedite filing new drug applications (NDAs) with regulatory 
authorities. When launching a product, a substantial quantity of capital 
is required. Consequently, substantial ''at-risk'' development 
operations may incur losses that might outweigh the time and 
resources allocated to quality and process knowledge projects. 

Although the foundations of statistical theory may be found in 
developments in probability made in the 18th century, the discipline as 
we know it today did not form until the latter half of the nineteenth and 
the beginning of the twentieth century. Charles S. Peirce created a 
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theory of statistical inference in his two books ''Illustrations of the Logic 
of Science'' (1877–1878) and ''A Theory of Probable Inference'' (1883), 
which highlighted the significance of reasoning based on 
randomization in statistics.  Because the calculations required to do the 
analysis of variance were so laborious and time-consuming, Fisher 
started to pay close attention to them in his research on the topic. The 
Major obstacle that nowadays the pharmaceutical industry is facing is 
not only developing a new chemical entity but also making it available 
in the market in a suitable dosage form, as from formulating to 
marketing requires more time and money. So to solve this problem, 
pharmaceutical industries are using various in silico modeling or 
pharmacophore modeling, which helps the industry achieve its 
objective quickly.  

Statistical analysis aims to find trends and patterns in large datasets 
by gathering, analyzing, and presenting the results. People in research, 
business, and government use statistics to make better, more informed 
choices daily. In their day-to-day operations, pharmaceutical 
companies employ roles ranging from the design of tests to the 
analysis of drug trials and the sale of medicines. Statistical methods 
applied to the aforementioned pursuits constitute pharmaceutical 
statistics. 

Stastical Modelling 
Breiman gave the concept of stastical modelling, proposing his view 
that the concept has two parts/cultures: the first part is data modeling, 
and the other part is algorithmic modeling. It is crucial to use modeling 
principles in order to comprehend the mechanism, which entails taking 
a vector of response variables y and a set of input variables x and 
studying their connection using modeling approaches. The data-
generating system under study may be simplified using a model. 

Types 

Descriptive Modelling 
Models like these work great for ruling out competing theories, but they 
don't do anything at all to understand the phenomenon at work, or the 
mechanism that generates the data; all they do is offer a reasonable 
description of the data in the right format. 

Mechanistic Modelling 
The principles of physics and biochemistry, as well as other basic rules 
of nature, provide the basis of mechanistic models. We can find the 
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unknown model parameters—adsorption coefficients, diffusivity, or 
material properties—and calibrate the model with less experimental 
data. A wide range of real-world scenarios may benefit from the 
mechanistic modeling.  

Statistical Parameters, Estimation 
Different stastical parameters, 1. Measures of central tendency 2. 
Dispersion (also called Variability, Scatter, Spread) 3. Coefficient of 
Dispersion (COD) 4. Variance 5. Standard Deviation (SD) σ 6. 
Residuals 7. Factor Analysis 8. Absolute Error (AE) 9. Mean Absolute 
Error (MAE) 10. Percentage Error of Estimate (PE) 

Research in the field of pharmacology relies heavily on statistical 
methods, which allow us to test hypotheses by describing the data 
using measures of central tendency and variance, such as the mean, 
median, standard deviation, confidence interval, and range. A 
parameter is a variable that is transmitted from one equation to 
another. It has a distinct statistical meaning. Values like these differ 
from statistics, which only provide information about subsets of a larger 
population, since they provide information about the whole population 
as a whole. 
1. Central Tendency: Averages are another tem for measurements 

of central tendency. The degree to which the values are 
concentrated in the center of the distribution may be determined 
with their assistance. Some popular ways to find the middle ground 
are as follows: (i) Arithmetic mean, (ii) Median, (iii) Mode 
Mean: It is in the middle of the distribution and is the average of 
the data. The arithmetic mean is another name for it. For every 
given set of data, finding the mean is as easy as adding them all 
up and dividing by the collection size.  
Median: Finding the data point in the center of the sequence after 
sorting it from lowest to highest yields the middle value, which is 
the data set's median.  As a measure of central tendency, the 
median takes a single number and shows how a collection of data 
clusters around that number. What this means is that it provides a 
means of describing the core of a dataset. 
Extreme Values have no effect on it. 
Mode: Most commonly occurring value and the mode is the most 
frequently occurring value in the data set. The mode is simple to 
compute and easily understood. Extreme levels have no affected 
whatsoever on mode. Even if the frequency distribution comprises 
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class intervals with uneven magnitudes, the mode can still be 
easily found. 

2. Dispersion:  It refers to how much a distribution is compressed or 
stretched. The variance, standard deviation, and interquartile 
ranges are common illustrations of statistical dispersion.  

3. Coefficient of Dispersion (COD): It is a unit-less measure of 
dispersion that characterizes the degree of dispersion with respect 
to the mean. 𝑪𝑶𝑫 = 𝝈/ 𝝁 ∗ 𝟏𝟎𝟎. 

4. Variance: It is the expected squared variance of a random 
variable from its mean and generally measures the dispersion of a 
group of random values from the mean. It provides a numerical 
depiction of the data scatter by squaring the differences between 
each value in the set and the mean, dividing the sum of the 
squares by the total number of values in the set, and finally, 
displaying the results to the viewer. 

5. Standard Deviation (SD) Σ:  It is a metric for estimating how much 
a set of data values vary or are dispersed. It is a figure that 
indicates how a group's measurement deviates from the expected 
or mean value. When the standard deviation is low, the majority of 
the data are fairly near to the average; when it is large, the data 
are dispersed. The standard deviation gives the user a numerical 
representation of the data's spread. 

6. Residuals: It is the discrepancy between the anticipated value (y') 
and the observed value (y) of the dependent variable.  A residual 
is present for every data point. The residuals are all 0, both in 
terms of total and mean. 𝑹 = 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒀 𝒗𝒂𝒍𝒖𝒆 − 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒀 𝒗𝒂𝒍𝒖𝒆. 

7. Factor Analysis: Collapsing a huge number of variables into a 
few interpretable underlying elements, it allows researchers to 
explore ideas that are not readily quantified directly by exploring 
variable connections for complicated concepts. 

8. Absolute Error:  This is the size of the discrepancy between the 
precise and approximate values.  The absolute error, proportional 
to the precise value's size, is called the relative error.  𝑨absolute 𝑬error = 𝑿 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 − 𝑿 𝒂𝒄𝒕𝒖𝒂𝒍. 

9. Mean Absolute Error (MAE): It is a quantity to measure how 
close forecasts or predictions are to the eventual outcomes.  It is 
an average of the absolute errors. The simplest measure of 
forecast accuracy is MAE.  The relative size of error is not always 
obvious. 
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10. Percentage of Estimate (PE): It is the difference between the 
approximate and the exact values as a percentage of the exact 
value.  
% 𝑬𝒓𝒓𝒐𝒓 = (𝑬𝒙𝒂𝒄𝒕 𝑽𝒂𝒍𝒖𝒆 − 𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒆 𝑽𝒂𝒍𝒖𝒆)/ 

 𝑬𝒙𝒂𝒄𝒕 𝑽𝒂𝒍𝒖𝒆 × 𝟏𝟎𝟎. 

Confidence Regions 
An expanded version of a confidence interval that accounts for many 
dimensions is a confidence region. Representing the parameter values 
most likely to be true given the data, it is a collection of points in an n-
dimensional space. The confidence zone is computed in a manner that, 
subject to several repetitions of the experiment, would, 95% of the time, 
include the actual parameter values. 
Interpretation: The statistical concept of a confidence interval is the 
likelihood, on average, that a parameter representing a population will 
lie within a predetermined range of values. The likelihood that a 
parameter will lie between two values near the mean is shown by a 
confidence interval. The degree of certainty or uncertainty in a 
sampling process may be measured using confidence intervals. They 
are often built with 95% or 99% confidence levels. With a 95% level of 
certainty, you may say that any number inside the 95% confidence 
interval represents the population's actual mean. The sample mean 
(the center of the CI) will differ from one sample to the next as a result 
of inherent sampling variability. 

Nonlinearity at the Optimum 
When an independent variable does not have a direct connection with 
a dependent variable, the statistical concept of non-linearity is 
employed to characterize the situation. In nonlinear relationships, there 
are cases when the output does not respond linearly to changes in the 
inputs. 

Sensitivity Analysis 
The goal of a sensitivity analysis is to identify the many input sources 
of uncertainty and determine the relative contributions to numerical and 
non-numerical uncertainties in the output of a mathematical model or 
system. Similar ideas may be found in uncertainty analysis, which 
focuses more on measuring and communicating uncertainty. It is 
recommended to do sensitivity and uncertainty assessments together. 
There are many advantages to doing sensitivity analyses, which 
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include recalculating results under different assumptions to determine 
the impact of a variable, including: 

1. Testing the resilience of model or system results when faced 
with uncertainty. 

2. Gaining deeper insight into the relationships between input and 
output variables within a model or system. 

3. Reducing uncertainty by pinpointing model inputs that 
significantly contribute to output uncertainty, warranting 
focused attention for enhanced robustness, possibly through 
further research. 

4. Finding inconsistencies or outliers in the model, often by 
discovering hidden relationships between parameters. 

5. Fixing inputs that don't affect output or finding and removing 
unnecessary parts of the model structure might help make it 
more efficient. 

6. Assisting modellers in conveying their findings to decision-
makers in a way that is clear, concise, convincing, and easy to 
understand. 

7. Identifying areas within the input factor space where the model 
output reaches its maximum, minimum, or fulfils certain optimal 
criteria, akin to optimization and Monte Carlo filtering. 

When there are many parameters in a model, a main sensitivity test 
may help narrow the emphasis to the ones that matter most during 
calibration. It is possible to waste time on factors that are not sensitive 
if we do not take their sensitivity into account. We also want to find 
meaningful relationships between our observations, model inputs, 
predictions, and forecasts so that we can improve our models. 

The choice of sensitivity analysis method typically depends on a 
variety of problem-specific constraints and settings.  

Sensitivity Analysis Methods   
Sensitivity analysis techniques encompass a wide array of approaches 
tailored to address various constraints. These methods are also 
differentiated by the nature of sensitivity measurement, encompassing 
variance decompositions, partial derivatives, or elementary effects. 
Here are some of the prominent sensitivity analysis methods: 

1. Derivative-based local method: Finding the partial derivative of 
the model's output (Y) with respect to an input variable (Xi) is the 
key to this approach. Its goal, in a local setting, is to determine how 
little changes to input elements affect the output. 
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2. Regression analysis: Regression analysis, as it pertains to 
sensitivity analysis, comprises fitting a linear regression model to 
the model's response. Direct indications of sensitivity are provided 
by standardized regression coefficients. When a substantial 
coefficient of determination confirms that the model response is 
linear, regression analysis is most useful. Its advantages include 
simplicity and low computational overhead. 

3. Variance-based methods: Included in this class are probabilistic 
methods that use probability distributions to depict input and 
output uncertainty. These techniques break down the total 
variation in output into its component parts, which may then be 
assigned to specific input factors or sets of variables. The degree 
to which an input variable affects the output is indicated by the 
amount of variation it causes. 

4. Variogram analysis of response surfaces (VARS): Previous 
approaches to sensitivity analysis failed to account for the 
response surface's or model's output's spatially ordered structure 
in the parameter space (Y=f(X)). The VARS approach addresses 
this by employing directional variograms to comprehensively 
illustrate sensitivity information, accounting for both direction and 
perturbation scale concepts. By embracing the scale-dependent 
nature of sensitivity, VARS overcomes the scale-related 
challenges encountered by conventional methods. 
These sensitivity analysis approaches help to evaluate a model's 
behavior and performance in a comprehensive manner by 
providing several ways to analyze the links between input and 
output variables. 

Optimal Design 
When it comes to experimental design, there's a subfield called optimal 
designs that aims for perfection according to certain statistical 
standards. It was the Danish statistician Kirstine Smith who did the 
ground-breaking work in this field. When designing experiments, 
optimal designs are essential for estimating statistical models, as they 
allow for the estimate of parameters in an unbiased manner with 
minimal variation. To get the same degree of parameter accuracy as 
an ideal design, a larger number of experimental runs is required for a 
non-optimal design. Practically speaking, optimum experimental 
designs help bring down the cost of experiments. The determination of 
design optimality relies on the underlying statistical model and is 
evaluated based on a statistical criterion tied to the variance matrix of 
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the estimator. The process of specifying an appropriate model and 
criterion function demands a sound understanding of statistical theory 
along with practical experience in experimental design. 

Among the many requirements for design optimization, a popular 
strategy is to choose time points so that the dispersion of parameter 
estimates, which is estimated at the optimal point by the inverse of the 
Fisher information matrix (FIM), is minimized. Finding the best times to 
sample in three-, eight-, or twelve-sample trials is a common research 
topic, and one prominent approach is D-optimal design (where D 
stands for determinant). The main idea is to create a large, fake sample 
of parameters with appropriately dispersed values. Optimal time 
selection is defined as maximizing the FIM determinant for all possible 
values of the parameters. This leads to the determination of a set of 
optimal sampling times corresponding to each parameter value. 
Subsequently, a histogram is constructed to visualize the frequency of 
optimal sampling time choices. This empirical distribution guides the 
selection of the most suitable sampling times for subsequent 
experiments. 

Optimal designs offer distinct advantages over sub-optimal 
experimental designs, including the following key benefits: 

1. Cost Reduction: Optimal designs contribute to lowering 
experimentation costs by enabling statistical model estimation 
with a reduced number of experimental runs. 

2. Versatility: Optimal designs are flexible and adaptable, 
accommodating diverse factors such as process, mixture, and 
discrete factors. 

3. Constrained Design-Space: When the design-space is small 
or restricted, optimal designs may be used, particularly when 
certain factor-settings are not feasible because of safety 
concerns or other constraints. 

In summary, optimal experimental designs significantly enhance the 
efficiency and effectiveness of experimental processes by enabling 
accurate parameter estimation with minimal resource expenditure. 
Their versatility and adaptability make them valuable tools for various 
types of experimental scenarios and constraints. 

Different Criterion of Optimal Design 
It is important to compare the designs' performance across several 
optimality criteria, and picking the right one takes some consideration. 
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A-optimality (''average'' or trace): The A-optimality criterion minimi-
zes the trace of the inverse of the information matrix and is one of the 
criteria. Regression coefficient estimates with the least average 
variance are those that meet this requirement.  
C-optimality: For a set of linear parameters in the model, this criteria 
seeks to minimize the variance of the best linear unbiased estimator.  
D-optimality (determinant): A well-liked metric is D-optimality, which 
aims to reduce the absolute value of X'X-1 or, in other words, maximize 
the determinant of the design's information matrix X'X. The goal of 
these criteria is to maximize the parameter estimates' differential 
Shannon information content.  
E-optimality (eigenvalue): Another design is E-optimality, which 
maximizes the minimum eigenvalue of the information matrix. 
T-optimality: This criterion maximizes the trace of the information 
matrix. Other optimality-criteria are concerned with the variance of 
predictions is  
G-optimality: The G-optimality criteria aims to minimize the greatest 
entry in the diagonal of the hat matrix X (X'X)−1X', and it is widely used. 
The worst-case scenario for the expected values is reduced as a result.  
I-optimality (integrated): Optimality, which aims to reduce the 
average prediction variance across the design space, is a second 
criteria on prediction variance.  
V-optimality (variance):  Thirdly, V-optimality attempts to minimize 
the average prediction variance across a collection of m particular 
points, which is a measure of prediction variance. 

Implementation 
Books and software libraries include catalogs of ideal designs. Plus, 
there are features in popular statistical packages like R and SAS that 
allow users to optimize designs according to their specifications. A 
model for the design and an optimality criteria must be specified by the 
experimenter before the approach may calculate an optimal design. 
Additional statistical theory and experience with experimental design 
are prerequisites for some more advanced optimum design subjects. 

Practical considerations 
More theoretical understanding of statistics and hands-on experience 
with experiment design is required for certain more sophisticated 
optimum design issues. 
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Based on the model and optimality criteria, top-notch statistical 
software offers either built-in libraries of optimal designs or iterative 
ways to generate nearly optimum designs. A predefined optimality 
criteria is available, or users may code their own. 
1. Atkinson, Donev, and Tobias document these three benefits (of 

optimum designs) in the textbook. 
2. In optimization theory, these kinds of criteria are known as 

objective functions. 
3. Fundamental notions in statistical theory include the Fisher 

information functional and other ''information'' functions. 

Population Modeling 
Modeling plays a pivotal role in the realm of drug development, 
particularly in the intricate process of population modeling, which 
necessitates robust underlying methodologies to ensure data 
accuracy, suitable computational platforms, sufficient resources, and 
effective communication. Despite the resource investment required, 
this approach can lead to time and cost savings by creating a platform 
to consolidate all information pertaining to novel therapeutic agents. 
Models lay the groundwork for explaining and understanding the time 
course of drug exposure and response following the administration of 
different formulations or dosages to people. Drug clearance and 
distribution volume are two critical characteristics that might be 
estimated with their help. Consistency between studies or patient 
groups may be ensured by constructing population models with 
relatively few data from each subject. The resulting parameter 
estimations can then be compared with past evaluations. Additionally, 
these estimates can be juxtaposed against data related to other drugs 
in the same therapeutic category, aiding in evaluating the 
developmental prospects of new therapeutic agents. 

Population modeling assessment boils down to developing a 
mathematical function that can represent a drug's pharmacological 
time course over a range of clinical trial dosages. The importance of 
careful dosage selection and regimen planning in turning medications 
from dangerous substances into useful therapeutic tools has been 
highlighted by Atkinson and Lalonde. Hence, modeling and simulation 
have become essential tools for integrating information, understanding, 
and processes to direct prudent choices about medication use and 
development. There are several areas of drug research that rely 
heavily on modeling and simulation; Figure 1 provides a brief summary 



14 | Computer-Aided Drug Development   

of these areas. Predicting exposure and response trajectories under 
different dosage regimens is made easier with the use of appropriate 
models. 

An important step in this development is the broad use of population 
modeling methods, which provide a structure for measuring and 
understanding the variability in pharmacological exposure and 
response. Through the use of population modeling, the relationships 
between a person's physiological characteristics and their reported 
drug exposure or reaction may be better understood and described. 
The idea was first proposed by Sheiner et al. in 1972 to deal with 
sparse pharmacokinetic (PK) data captured during therapeutic drug 
monitoring, but it has since been extended to include models that link 
drug concentration to response (pharmacodynamic or PD). 
Consequently, modeling has become an essential tool in the process 
of developing drugs. 

Two methods were previously used to estimate population 
parameters: one was the ''naive pooled approach,'' which fitted data 
from all individuals simultaneously and ignored individual differences, 
and the other was the ''two-stage approach,'' which fitted data from 
each individual separately and then aggregated their parameter 
estimates to produce population parameters. Dosage compliance, 
missing data, and other inaccuracies may amplify the problems with 
both methodologies, making it much more difficult to get accurate 
parameter estimations. By eliminating the drawbacks of previous 
methods, Sheiner et al. were able to estimate population mean 
parameters, between-subject variability (BSV), and the effects of 
covariates that shed light on drug exposure variability using sparse 
data from many subjects. By using this method, standard errors could 
be generated, which allowed for an evaluation of parameter accuracy. 

The phrase ''population PK'' may make it sound like individual 
patients aren't important, but the explanation of variability highlights 
how important they are in population models. Each person's data helps 
find patterns, such how drug exposure increases with age or how 
weight changes, and then we can estimate population features based 
on those trends. Pharmacometrics harnesses these insights to 
enhance our understanding of mechanisms, guide initial dose selection 
for testing, tailor or personalize dosages for patient subpopulations, 
and evaluate study design appropriateness. 
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FIGURE 1  Brief outline of some areas in which modeling and simulation are 

commonly employed during drug development. 

Quality by Design in Pharmaceutical Development 
Starting with established goals, quality by design (QbD) places an 
emphasis on item and cycle knowledge and controls based on solid 
science and the quality risk board (ICH Q8), and it is an effective 
method for dealing with product improvement. The concept of Quality 
by Configuration was first proposed by Joseph M. Juran. It is possible 
to combine product and process knowledge acquired throughout 
development by building needed qualities from data process 
knowledge.  The main objective of QbD is to achieve the quality 
products are  
1. Ensure better design of product with fewer problems.  
2. Continuous improvement.  
3. Better understanding of the process.  
4. Maximize productivity in production while decreasing expenses, 

project rejections, and waste.  
5. Empowerment of technical staff.  
6. Minimize deviations and costly investigations. 
7. Eliminate batch failures.  
8. Benefits of QBD for Industry.  
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Tools Applied in QBD Approach  
Design of Experiment (DoE): If you want the most dramatic results 
from your lead testing, this is the way to go. Minitab and Statistica are 
examples of programming tools that may be used to conduct a DoE. 
This allows for the screening of many parameters with few 
experimentation in order to determine the significant ones. The primary 
goal of these instruments is to identify basic effects, rather than the 
impacts of cooperation. Two ways exist for doing a DoE: screening 
methods using a fragmented factorial design or a Placket-Burman test. 
Alternatively, in the second approach, optimization, main and 
interaction effects are investigated using mixture designs, surface 
response methodologies (such as Central composite and Box-
Behnken), and complete factorial designs. 

Applications of Quality-By-Design  

In Quality Profiling and Optimization of Drug Products 
With advancements in technology and the development of modern 
production tools, the industry has seen improvements in quality and 
cost reduction due to vast research, technological developments and 
the introduction of innovative manufacturing gear. Quality by Design 
(QbD) is quickly becoming the approach of choice in pharmaceutical 
research. It places a focus on understanding the product and the 
process, which in turn prioritizes scientific rigor and quality risk 
management. The idea of Quality by Design was first proposed by 
Joseph M. Juran. Adherence to the specifications outlined in ICH Q 8 
and Q 9 is critical for risk assessment and the delivery of high-quality 
products. Design of Experiment (DoE) is an essential aspect of Quality 
by Design (QbD) and is a methodical approach to conducting 
experiments using software like Statistica, Minitab, and statease in 
order to maximize output. There are two approaches to experimental 
design. DoE is used in the screening and optimising different phases 
of formulation development. Screening is used to uncover important 
characteristics among many candidates with a minimum of 
experimentation. The primary goal of both the Placket-Burman and the 
fractional factorial design is to single out the most important effects. 
However, in optimisation, complete factorial designs, surface response 
techniques (such as Central composite, Box-Behnken), and mixed 
designs are often regarded to be carried out. These designing 
experiments are used only when certain aspects that appear to be 
contributing in process or formulation have been identified. During QbD 
approach for optimization study of different parameters are essential. 
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To validate the medicinal product's quality profile and minimize 
interactions among the input variables for optimization, pharmaceutical 
researchers often use AI features such as Quality by Design (QbD) and 
Design of Experiment (DoE). In a study conducted by Prusty et al. 
(2012), an extended-release matrix tablet containing benedipine 
hydrochloride was developed. The tablet was designed using the Box-
Behnken Design Response Surface Methodology to Study Optimized 
Formulation Variables on the Drug Release Pattern. The researchers 
used one-way ANOVA to statistically analyze the tablets, and the 
quadratic response surface methodology (BBD) was used to predict 
the optimal levels of these factors for extending the drug's release. A 
number of mathematical models were used to kinetically assess the in 
vitro drug release data. Using the Quality by Design (QbD) approach 
in pharmaceutical goods allows for the study of many crucial criteria, 
including 
i. Target product profile (TPP) and Quality Target Product 

profile (QTPP) 
It reveals the high standards of the drug's quality that guarantee 
its effectiveness and safety. Dosage form, administration method, 
dose strength, pharmacokinetics, and stability are all important 
details to include in a product profile. Because it is organized 
according to the most significant parts of the drug's label and 
emphasizes the product's intended performance features in 
connection to the patient's demand, the TPP is a patient- and 
labeling-centered concept. Similarly, when it comes to issues of 
scientific security, QTPP offers a numerical alternative.  The 
Quality Target Product Profile (QTPP) should only include patient-
related efficacy that may be used to develop and optimize a 
formulation and production process.  ''Identity,'' ''assay,'' ''dosage 
form,'' ''purity,'' and ''stability'' are some of the labeling problems 
with QTPP materials. Among the many potential quality aspects of 
a pharmaceutical product are its identity, assay, content 
homogeneity, microbiological restrictions, residual solvents, 
degradation products, drug release, and moisture content. 

ii. Critical Quality Attributes (CQAs) and Critical Material 
Attributes (CMAs) 
CQAs are qualities (physical, chemical, biological, or 
microbiological) that should fall within acceptable ranges to ensure 
the product meets quality standards. CMAs are characteristics of 
raw materials that must remain within predetermined parameters 
in order to produce consistent, high-quality drug compounds, 
excipients, or intermediates. 
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iii. Critical Process Parameters (CPP) 
These characteristics are production process variables that may 
affect finished product CQAs. Performing risk assessments at 
various points in the product lifecycle helps identify process 
characteristics and Critical Manufacturing Attributes (CMAs). The 
proven collection of input variables and process parameters that 
ensure quality is called the Design Space. 

iv. Design Space 

A pharmaceutical's design space (DS) is the variety of potential 
material and process circumstances that nevertheless guarantees 
high quality. This is the proven, multi-factor combination of input 
factors (such as material qualities) and process parameters that 
ensures quality. 

v. Failure Mode Effects Analysis (FMEA) 
Failure mode and effect analysis (FMEA) is a method for 
evaluating risk that involves analyzing the probability functions of 
an event's severity, occurrence, and detectability. 

vi. PAT (Process Analytical Technology) 
According to the Food and Drug Administration (FDA), Process 
Analytical Technology (PAT) is ''a mechanism for designing, 
analysing, and controlling pharmaceutical manufacturing 
processes by measuring critical process parameters that affect 
critical quality attributes of an active pharmaceutical ingredient 
(API) during manufacturing.''  
In order to manage the drug development process more 
effectively, artificial intelligence approaches that use Machine 
Learning techniques have become essential. These models 
employ real-world information to inform their forecasts and design 
decisions, boosting output, uniformity, and quality in the process. 
The use of machine learning in the pharmaceutical industry 
presents a great chance to create new, more effective drug 
compositions. In conclusion, the adoption of Quality by Design 
(QbD) principles, combined with machine learning and advanced 
technology, is transforming the pharmaceutical industry. With a 
focus on product and process understanding, risk management, 
and continuous improvement, QbD is paving the way for safer and 
more effective drug formulations in a cost-effective manner. 
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ICH Q8 Guideline  
Quality by Design (QbD) is based on the guiding concepts laid forth in 
the ICH quality standards, which include a science-based approach to 
product creation, risk assessment, a lifecycle approach, and method 
design. A few notable documents that embody these ideas include the 
ICH Q8 Pharmaceutical Development, the ICH Q9 Quality Risk 
Management, and the ICH Q10 Pharmaceutical Quality System. 

The International Conference on Harmonization (ICH) Q8 standard 
established the idea of Quality by Design (QbD). Process control based 
on strong scientific principles and quality risk management are the 
tenets of this methodical approach, which begins with established 
goals and places an emphasis on product and process understanding. 
In particular, ICH Q8 highlights the need of 'quality by design' being 
seamlessly integrated into the drug's lifetime and pharmaceutical 
development. By committing to ICH Q8 compliance, organizations may 
embed consistent operational quality throughout their processes, 
making quality a top priority. 

Important components, such as medicinal ingredients, excipients, 
container sealing mechanisms, and production procedures, that 
substantially impact product quality are identified under the purview of 
ICH Q8. Determining these crucial characteristics and justifying control 
measures are emphasized in the guideline. Proposed methods for 
efficient allocation of design space include experimental designs, 
Process Analytical Technology (PAT), previous knowledge, and quality 
risk management concepts. 

Process Analytical Technology, or PAT for short, is essential to the 
Quality by Design methodology. It entails taking quick readings of 
important performance and quality indicators while production is 
underway. As a result, the quality of the finished product may be more 
reliably assured. Importantly, Pfizer was an early adopter of QbD and 
PAT practices. 

The Quality Target Product Profile (QTPP) is an essential part of 
Quality by Design (QbD) as it provides an overview of a drug's quality 
features in the future, taking safety and effectiveness into account. Part 
of this process is figuring out what the product's most important 
process parameters (CPPs) and quality characteristics are. Product 
quality attributes (CQAs) are those that guarantee the product meets 
the specified standards, while process parameters (CPPs) have an 
immediate effect on CQAs. 
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Drug Substances 
The medication substance's physicochemical and biological 
characteristics may impact the product's performance and its 
manufacturability. Solubility, water content, particle size, crystal 
characteristics, biological activity, and permeability are some of the 
desirable qualities that should be investigated. 

Excipients 
Discuss the selected excipients and their concentrations in light of how 
they will affect the drug product's performance and manufacturability. 
The drug substance's compatibility with the chosen excipients must be 
evaluated. If the product contains multiple drug substances, the 
compatibility between these substances should also be assessed. 

Formulation Development 
A description of the formulation development process should be 
provided. The process begins with the formulation's conceptualization 
and continues until its final design, during which time the qualities 
essential to the drug product's quality are identified. All clinical 
formulations should be linked to the proposed commercial formulation 
by comparative in vitro or in vivo investigations, such as dissolution or 
bioequivalence. If the correlations work, it will be easier to choose 
suitable dissolution acceptability criteria and, after making adjustments 
to the product or manufacturing process, there may be less need for 
further bioequivalence studies. 

Container and Closure System 
It is important to analyze potential interactions between the product, 
container, and label when choosing the container closure system for 
the commercial product. This includes studying the right reasons for 
choosing the materials for main and secondary packing. 

Microbiological Attributes 
It is important to consider the antibacterial properties of specific items 
as well as the efficacy of preservative systems in products that include 
these substances. Verifying that the container closure method 
effectively prevents microbiological contamination is essential for 
sterile items. Making sure the concentration maintains the necessary 
effectiveness throughout the product's planned shelf life, the rationale 



 Unit I: History of Computers in Pharmaceutical Research | 21 

for the lowest stated concentration of antimicrobial preservative should 
revolve on safety and efficacy. 

Compatibility 
It is important to address concerns like precipitation and stability when 
discussing the therapeutic product's compatibility with reconstitution 
diluents. The data should include the suggested in-use duration, the 
ideal temperature for storage, and the most probable concentration 
extremes. Also, things to think about when diluting or admixing items 
before administration (such putting the product in big volume infusion 
containers) should be taken into account. 

Regulatory and Industry Views On QBD 
Customer happiness with service, product, and process is an indicator 
of quality. Timely, low-value, flawless, and dependable performance is 
what the client is requesting. There are two approaches to ensure 
customer satisfaction: offering alternatives and ensuring the product is 
free from defects. A rise in product quality is on the horizon as a result 
of new regulatory initiatives. 

FDA perspective 
Pharmaceutical firms were requested by the US Food and Drug 
Administration (FDA) in 2005 to provide chemistry, manufacturing, and 
controls (CMC) information in their New Drug Applications (NDAs) that 
demonstrated the adoption of Quality by Design (QbD). Understanding 
the product's essential quality characteristics (CQAs) and developing 
a manufacturing process that can reliably create products that fulfill 
those CQAs are the primary goals of quality by design (QbD), a risk-
based approach to pharmaceutical development. 

The FDA's decision to adopt QbD was based on several factors, 
including: 

1. The increasing complexity of pharmaceutical manufacturing 
processes. 

2. The need to improve the quality and consistency of 
pharmaceutical products. 

3. The desire to reduce the number of manufacturing changes that 
require regulatory approval. 
Despite its complexity and difficulty, Quality by Design (QbD) 
offers great promise for enhancing the security and efficacy of 
pharmaceuticals. 
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The key elements of QbD include: 
1. Defining the product's CQAs: The first step in QbD is to identify the 

CQAs of the product. Important to the product's security and 
usefulness are these features. 

2. Understanding the manufacturing process: The next step is to 
understand the manufacturing process that will be used to produce 
the product. This includes understanding the factors that can affect 
the CQAs of the product. 

3. Designing a robust manufacturing process: Designing a strong 
manufacturing process requires first understanding the product 
and process CQAs. This is a process that is designed to 
consistently produce products that meet the CQAs, even in the 
face of variations in the raw materials or manufacturing conditions. 

4. Implementing a risk-based approach to quality: A risk-based 
approach to quality is also an integral part of QbD. This entails 
finding potential threats to the product's quality, evaluating them, 
and then adopting measures to lessen their impact. 
QbD is a relatively new approach to pharmaceutical development, 
but it is gaining widespread acceptance in the industry. The FDA 
has stated that QbD is the preferred approach to pharmaceutical 
development, and many pharmaceutical companies are now 
adopting QbD principles. 
With the arrival of 2005 came the time to adopt QbD for a more 
systematic approach, and the USFDA requested that some 
companies submit their CMC in QbD format. The QbD approach 
is built upon question basis review (QbR).  

Regulatory Challenges and Inspection  
According to Anastasia G. Lolas and Anurag S. Rathore, ''In a QbD 
concept, the regulatory burden is less because there are wider ranges 
and limits based on product and process understanding. Changes 
within these ranges and limits do not require prior approval.'' 

The system-based methodology and CDER's Compliance Program 
''Inspection of Licensed Biological Therapeutic Drug Products'' have 
traditionally been used for inspections by the FDA. Nevertheless, in this 
case of QbD being required, the FDA inspection team will evaluate the 
application-described process design's execution and efficacy, as well 
as the transfer of knowledge and risk management from development 
to production. The efficacy of the quality system in ensuring consistent 
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product quality, managing deviations, improving processes, 
implementing changes to control procedures, and managing 
knowledge and risk throughout the product lifecycle will also be 
assessed during the inspection. 

There will be no change to the previously conducted inspections of 
supplier management, raw material screening, and facility and 
equipment qualification and maintenance. On the other hand, we will 
emphasize the programs that show consistency and robustness in 
design, testing, and monitoring. Programs for design, testing, and 
monitoring that show consistency and robustness would be 
commended. 

Because there is a unit broader range and limitations supported 
product and technique comprehension in a QbD concept, the 
restricting load is reduced. These ranges and restrictions may be 
changed without prior permission.  

The CDER's Compliance Program ''Inspection of accredited 
Biological Therapeutic Drug Products'' and the FDA's system-based 
approach are the usual means of conducting inspections. But the 
question that comes up in this context is how the investigation can 
guarantee the location of any QbD that is outsourced. When the FDA 
examines a QbD concept during pre-license or preapproval 
inspections, they can see how well the method design is implemented 
and how well data and risk management are transferred from 
development to production. In terms of data and risk management, 
method improvements, modification management, consistent product 
quality, and deviation management, the standard system may be 
examined and assessed for its efficacy throughout the product lifespan. 
Due to its accidental nature, the review of abilities and instrumentality 
qualifications and maintenance, as well as raw material screening and 
provider management, are same. However, programs that show 
lustiness and consistency in their design, testing, and observation 
would be commended.  

When it comes to implementing QbD, most pharmaceutical 
companies believe that easier guidance is required. Companies sought 
the federal agency's elucidation on QbD jargon, appropriate methods, 
criteria for selecting and deselecting CQAs, standards for determining 
if controls are adequate, and criteria for replacing analytical 
techniques. The ten most significant obstacles to QbD adoption are as 
follows. At various stages of adoption, these obstacles are assessed in 
relation to other medication kinds.  
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The first four challenges occur at companies and these are 
1. Internal placement refers to the separation of many practical 

domains, such as research and development (R&D) and 
production (or quality and regulation).  

2. Disbelief in the business case, or the fact that many questions 
remain unanswered about the timing and budgetary 
requirements for implementing QbD.  

3. Inadequate tools for the job (such as problem management 
software or a lack of knowledge about the consequences of 
critical quality attribute [CQA]).  

4. Contract manufacturers and suppliers are becoming more 
important in QbD implementation, so how can we ensure their 
alignment?  

The next six challenges are directly associated with the regulative 
authority:  

1. Discordant handling of QbD by various administrative bodies  
2. No real direction for the company  
3. Authorities are ill-prepared to deal with QbD applications.  
4. A method to get regulatory benefits The information that is 

currently being supplied does not instill trust.  
5. The failure of global regulatory agencies to work together  
6. Current interaction with corporations isn’t causative to QbD.  

All parties agree that the only way to overcome the obstacles and 
problems with QbD implementation is for businesses and regulatory 
agencies to have an economical discourse. 
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